Personal Profile

virtual reality

Crytek Announces VR First Partnership with IEEE

Crytek Announces VR First Partnership with IEEE

Crytek Announces VR First Partnership with IEEE

The IEEE joins growing list of high-profile partners for Crytek’s academic virtual reality initiative

Expanding the reach of its VR First academic initiative,Crytek today announced a new strategic partnership with the Institute of Electrical and Electronics Engineers (IEEE).

The IEEE is the world’s largest professional association for the advancement of technology, and supports a network of over 2,300 universities worldwide by providing course accreditation and learning resources.

Yu Yuan, Chair of the IEEE Digital Senses Initiative, said: “The IEEE Digital Senses Initiative is pleased to be a partner in the VR First initiative. We believe that virtual reality, as well as augmented reality, will have a great impact on all aspects of industry.”

Tom Coughlin, Director of the IEEE Region 6 and Chair of the IEEE Consumer Electronics Society Future Directions Committee, said: “Providing laboratories at Universities and Colleges where students can learn and create using state-of-the-art VR tools will be important to prepare the next generation of innovators who will make these technologies a part of our daily lives.”

Welcoming the partnership, Ferhan Özkan, Crytek’s Senior Business Development Manager Partnerships & Alliances, said: “Collaborating with the IEEE dramatically broadens the potential reach of VR First, and emphasizes our commitment to ensuring the program makes a genuine impact on the landscape of VR research and development at the grassroots level.”

Crytek’s collaboration with the IEEE follows on from news that the VR First program – which provides state of the art VR research facilities on university campuses – is being rolled out to seven new academic institutions in North America with support from AMD, Leap Motion, OSVR, and Razer.

For more information on VR First, visit cryengine.com/vrfirst.

Crytek Announces VR First Partnership with IEEE

Crytek Announces VR First Partnership with IEEE

About the Institute of Electrical and Electronics Engineers

The IEEE is the world’s largest professional association advancing innovation and technological excellence for the benefit of humanity. IEEE and its members inspire a global community to innovate for a better tomorrow through its highly-cited publications, conferences, technology standards, and professional and educational activities. IEEE is the trusted “voice” for engineering, computing and technology information around the globe. There are more than 430,000 IEEE members in more than 160 countries.

About VR First

VR First is an academic initiative designed to provide state-of-the-art facilities to anyone interested in exploring the power and potential of virtual reality development. The program encourages educational institutions around the world to establish dedicated VR labs on their campuses by partnering with Crytek and leading VR hardware innovators. VR First participants have full access to Crytek’s CRYENGINE software alongside the latest technology required for VR development. The overarching goal of VR First is to nurture new talent in VR development and create a global community equipped to embrace this exciting field of technology.

About Crytek

 Crytek is an independent videogame developer, publisher, and technology provider with headquarters in Frankfurt am Main (Germany) and six other studios around the world. Established in 1999, Crytek has created multiple award-winning titles, including the original Far Cry, the Crysis series, Ryse: Son of Rome, and Warface. All of Crytek’s games are developed using CRYENGINE, the company’s cutting-edge 3D game technology, which is also the first choice of other leading developers and licensees when creating games for PC, Xbox One, PlayStation®4, and Android. Crytek’s ongoing growth in the games-as-a-service market has extended the company’s reach as they continue to deliver top quality interactive experiences to players through self-publishing platforms online.

Virtual 3D Teleportation in Real Time with NVIDIA GPUs

Virtual 3D Teleportation in Real Time with NVIDIA GPUs

Virtual 3D Teleportation in Real Time with NVIDIA GPUs

Imagine being able to virtually teleport from one space to another in real time.

With 3D-capture cameras and a mixed reality display such as HoloLens, Microsoft Research’s new ‘haloportation’ innovation allows users to see, hear, and interact with remote participants in 3D as if they are actually present in the same physical space.

Custom software helps reconstruct every possibly viewpoint from each camera and then stitches them together into one fully formed 3D model.

“We want to do all of this processing in a tiny window — around 33 milliseconds — to process all the data coming from all of the cameras at once, basically, and also create a temporal model, and then stream the data,” says project lead Shahram Izadi, whose team leans on NVIDIA GPUs to crunch the relevant numbers.

Izadi also mentioned the system is able to record and playback entire previous ‘haloportation’ sessions which is like walking back through time to experience memorable events.

Using Virtual Reality to Optimize User Experience Share Your Science: Using Virtual Reality to Optimize User Experience

Share Your Science: Using Virtual Reality to Optimize User Experience

Share Your Science: Using Virtual Reality to Optimize User Experience

EASE VR Co-Founders Prithvi Kandanda, CEO and Fred Spencer, CTO share how they are using NVIDIA GPUs and real-time analytics to understand a user’s behavior in virtual environments. Use cases and applications vary across industries and including retail, sports, social, manufacturing, and entertainment.

Learn more about EASE VR at https://easevr.com.

Share your GPU-accelerated science with us at http://nvda.ly/Vpjxr and with the world on #ShareYourScience.

Watch more scientists and researchers share how accelerated computing is benefiting their work at http://nvda.ly/X7WpH

NVIDIA VR Ready Program Points Pros to a Great Virtual Reality Experience

NVIDIA VR Ready Program Points Pros to a Great Virtual Reality Experience

NVIDIA VR Ready Program Points Pros to a Great Virtual Reality Experience

Virtual reality isn’t just at the heart of a new era of entertainment. It’s also for serious business.

That’s why we’re helping developers, businesses, OEMs and independent software vendors with our NVIDIA VR Ready program, which ensures they have the tools and technologies to create and enjoy the best possible professional VR experience.

“Enterprise adoption will outpace consumer adoption for some time,” said Bill Briggs, chief technology officer for Deloitte Consulting, in a recent Tech Trends 2016 report spotlighting VR and augmented reality.

We’re working with top OEMs such as Dell, HP and Lenovo to offer NVIDIA VR Ready professional workstations. That means models like the HP Z240, Z640, and Z840, Dell Precision T5810,  T7810, and T7910, and the Lenovo P500, P710, and P900 all come with NVIDIA-recommended configurations that meet the minimum requirements for the highest performing VR experience.

Quadro professional GPUs power NVIDIA professional VR Ready systems. These systems put our VRWorks software development kit at the fingertips of VR headset and application developers. VRWorks offers exclusive tools and technologies — including Context Priority, Multi-res Shading, Warp & Blend, Synchronization, GPU Affinity and GPU Direct — so pro developers can create great VR experiences.

McCarthy Building Companies’ operating room

McCarthy Building Companies’ operating room

An Industry First for Mobile VR

We’re also enabling the industry’s first professional-class mobile workstation, which lets users take a great VR experience wherever they go.

The MSI WT72 is the first NVIDIA VR Ready professional laptop. It lets designers, engineers and others run VR-powered design reviews anywhere, improving product quality and speeding workflows. With it, companies can use immersive technology to train remote employees. And architects like those at McCarthy Building Companies Inc. can let customers visualize concepts and designs. They can even walk through complete virtual buildings.

“Providing customers with a high-fidelity VR experience during design review allows them to realistically visualize and make informed decisions, which can prevent costly design changes after construction has started,” said Alex Cunningham, VDC engineer at McCarthy Building Companies. “With NVIDIA Quadro driving VR at high frame rates, the VR Ready MSI laptop lets us bring virtual reality to our clients’ locations and communicate designs more effectively.”

NVIDIA GPUs are the keystone of VR because graphics requirements are so high. Head-mounted displays, for example, require 90 frames per second, with a display for each eye.

The MSI WT72 VR Ready laptop is the first to use our new Maxwell architecture-based Quadro M5500 GPU. With 2,048 CUDA cores, the Quadro M5500 is the world’s fastest mobile GPU. It’s also our first mobile GPU for NVIDIA VR Ready professional mobile workstations, optimized for VR performance with ultra-low latency.

MSI WT72 VR Ready laptop

MSI WT72 VR Ready laptop

“Wow…seriously impressive for such a compact package. I now have the freedom to setup shop to design VR experiences on the go,” says Drew Hunt, 3D Artist at HTC. “The NVIDIA Quadro M5500 coupled with the MSI WT72 notebook is the perfect combo to use HTC Vive at work and at home.”

With features like these, scientists, product designers, educators and filmmakers can use the MSI WT72 to tackle the most challenging visual computing tasks. Plus, it comes certified for Autodesk VRED to create amazing, immersive 3D design environments.

“We’ve certified the MSI professional ‘VR Ready’ laptop with the NVIDIA Quadro M5500 mobile GPU because it delivers an amazing Autodesk VRED VR experience wherever our customers need it,” said Lukas Faeth, product manager, Autodesk VRED.

Come see the latest VR technologies from our partners and professional applications developers — along with NVIDIA VR Ready Workstations and the MSI WT72 professional VR Ready laptop —at NVIDIA’s annual GPU Technology Conference, April 4-7, at the San Jose Convention Center in Silicon Valley.

NVIDIA VR Ready Program Points Pros to a Great Virtual Reality Experience

NVIDIA VR Ready Program Points Pros to a Great Virtual Reality Experience

6 Can’t Miss Experiences at the GPU Technology Conference

6 Can’t Miss Experiences at the GPU Technology Conference

6 Can’t Miss Experiences at the GPU Technology Conference

Explore the future of artificial intelligent and deep learning, experience virtual reality, and see what the future holds for self-driving cars at the GPU Technology Conference in Silicon Valley, April 4-7.

In addition to keynotes by notable speakers that include NVIDIA CEO Jen-Hsun Hung, Toyota Research Institute CEO Gill Pratt, and IBM Watson CTO Rob High, as well as over 500 talks, tutorials and scientific posters – here are the top six must-see things at GTC this year:

  1. AI Playground: Interact with hands-on deep learning demos from universities, start-ups and well-known companies like Baidu, Twitter and Yahoo.

  1. VR Village: New this year, experience the latest advances in a variety of immersive virtual reality experiences from a wide-range of industries including gaming, media & entertainment, manufacturing, medicine and science.
  1. Emerging Companies Summit Pavilion: Over 90 start-ups will showcase how they are using GPUs to solve some of the world’s most complex challenges. Twelve of the participants will be vying for $100,000 at the Early Stage Challenge.
  1. Hands-on Labs: Take one of the intensive 26 instructor-led labs that range from 90 to 180 minutes covering a wide-range of topics, from the comfort of your own laptop. Attendees looking for more training can grab a seat in the self-paced labs area or try them from anywhere for free, using promo code GTC16_EARLYBIRD to receive free credits on NVIDIA’s cloud-based learning platform.
  1. Share Your Science: This is a great opportunity to share how you are doing amazing work with GPUs. NVIDIA will be video interviewing developers, researchers and scientists and then amplifying your stories to the broader community. Fill out this short form to be considered for an interview.
  1. Face2Face Demo: A team of researchers from Stanford, the Max Planck Institute for Informatics and the University of Erlangen-Nuremberg are using TITAN X GPUs and CUDA to manipulate YouTube videos with real-time facial reenactment that works with any commodity webcam. You can experience the magic of the Face2Face demo in person at the NVIDIA booth.

Register by April 2 to save up to $300, and see what the future holds at the GPU Technology Conference.

12 Startups Vying for $100,000 at GPU Technology Conference

12 Startups Vying for $100,000 at GPU Technology Conference

12 Startups Vying for $100,000 at GPU Technology Conference

Each startup will be given four minutes to present their GPU-accelerated tech and business plan live on stage to an audience of technology executives.

The challenge is designed for startups in the GPU ecosystem that have raised less than $1 million in seed funding and are ready to expand their visibility and demonstrate their potential to investors.

“We’ve had hundreds of companies at different stages of development come to ECS over the years,” says Jeff Herbst, VP of business development at NVIDIA. “They get a big boost in exposure, they get valuable feedback and insights, and many have become incredibly successful, like Oculus Rift and Natural Motion.”

12 Startups Vying for $100,000 at GPU Technology Conference

12 Startups Vying for $100,000 at GPU Technology Conference

Some of the companies competing in this year’s Early Stage Challenge are:

Aerialguard (Israel) — Provides autonomous situational awareness for drones and UAVs, dramatically increasing safety, survivability, and mission capabilities.

Horus Technology (Italy) — Develops a wearable device that uses computer vision and machine learning to aid visually impaired people, describing the environment through bone conduction.

Hypercubes (U.S.) — Develops satellites that reveal unprecedented details of Earth, with the ability to remotely classify chemical compositions for applications such as precision farming, mining, and oil & gas operations.

Analytical Flavor Systems (U.S.) — Uses machine learning and AI to identify and predict real-time flaws, contaminations and batch-to-batch deviations for food and beverage producers.

12 Startups Vying for $100,000 at GPU Technology Conference

12 Startups Vying for $100,000 at GPU Technology Conference

An Introduction to Virtual Reality

What is Virtual Reality? Virtual Reality is a set of computer technologies which, when combined, provide an interface to a computer-generated world, and in particular, provide such a convincing interface that the user believes he is actually in a three dimensional computer-generated world. This computer generated world may be a model of a real-world object, such as a house; it might be an abstract world that does not exist in a real sense but is understood by humans, such as a chemical molecule or a representation of a set of data; or it might be in a completely imaginary science fiction world.

A key feature is that the user believes that he is actually in this different world. A second key feature of Virtual Reality is that if the human moves his head, arms or legs, the shift of visual cues must be those he would expect in a real world. In other words, besides immersion, there must be navigation and interaction.


1. Computer mediated sensing

Different kinds of VE technology support different modes of interaction.

  • One kind of VE technology employs subjective immersion, in which the user interacts as if using an ordinary desktop computer system. The user views the system from the usual close but remote position and interacts through standard or special-purpose input or control devices such as keyboards, mouse controls, trackballs, joysticks, or force balls. Three dimensions are represented on 3D displays through the use of simulation software employing perspective, object rotation, object interposition, relative size, shading, etc.
  • The other kind of VE technology uses spatial immersion. The user is required to get inside the virtual space by wearing special equipment, typically at least a helmet mounted display that bears sensors to determine precise helmet position within the VE system’s range, in order to interact with the simulated environment. The user is thus immersed in a quasi-3D virtual space in which objects of interest appear to exist and events occur above, below, and around in all directions toward which the user turns his or her head.

Here follows a description of the typical hardware needed to run a virtual reality system. It will later be discussed whether it’s advisable to maintain all of these components when trying to implement a VE on a PC. What is important here is to focus on a standard architecture, as it is usually described in literature.

Virtual Reality is often used as comprehensive term to describe the use of 3-D graphics displays to explore a computer generated world. This interaction between man and machine can happen according to different styles that are representing the actual possibility and potential of the technology. The different styles of interaction depend upon the way the virtual environment is represented. We can identify at least six interaction styles that refer to the way the simulated/virtual environment is represented: desktop, projected, immersive, Cave, telepresence, augmented.

1) Desktop VR

The most popular type and is based upon the concept that the potential user interacts with the computer screen without being fully immersed and surrounded by the computer-generated environment. The feeling of subjective immersion can be improved through stereoscopic vision (i.e., CrystalEyes) and operative action with interface can be guaranteed via pointing devices (mouse, joystick) or typical VR peripherals such as Dataglove. Desktop VR is used mainly in games but professional application are currently widely diffused. Example of professional application domains come from general industrial design, engineering, architecture and the visualisation of data streams. The main benefit of desktop VR is its limited cost and less involving use of interacting technology, as a matter of fact according to different scenarios of use it might be more appropriate a less “invasive” device such as a CRT monitor than a wired HMD. It seems that desktop VR is particularly successful with the inspection of sample objects as opposed to immersed VR where the best exploitation is with the exploration of spaces. Up to date CAD/CAM systems slowly shifted in their performance towards the quality of VR interaction when they allowed the user to manipulate 3-d objects as if they were real.

2) Projected VR

This is technological solution often seen in VR-Art shows and in VR leisure applications. It is based upon the overlapping of the image of the real user on the computer generated world. That is to say that the user can see his image overlaid the simulated environment. A special movement tracking device can capture the movements of the user and insert them so that they can cause actions and re-actions in the virtual world.

3) Immersive VR

With this type of solution the user appears to be fully inserted in the computer generated environment. This illusion is rendered by providing HMD, with 3-D viewing and a system of head tracking to guarantee the exact correspondence and co-ordination of user’s movements with the fee-back of the environment.

4) CAVE

Cave is a small room where a computer generated world is projected on the walls. The projection is made on both front and side walls. This solution is particularly suitable for collective VR experience because it allows different people to share the same experience at the same time. It seems that this technological solution is particularly appropriate for cockpit simulations as it allows the views from different sides of a imaginary vehicle.

5) Telepresence

Users can influence and operate in a world that is real but in a different location. The users can observe the current situation with remote cameras and achieve actions via robotic and electronic arms. Telepresence is used for remote surgical operations and for the exploration/manipulation of hazardous environments (i.e., space, underwater, radioactive.

Virtual Reality is the product of a trick. The VR system tricks the user into believing that the Virtual Environment by which he feels himself surrounded is the actual, real environment. This is made possible by several different devices, each with its own technology, which produce each a specific aspect of the VE, relevant for a specific sense. We will discuss hardware relevant for the three senses which are to be immersed in the VE: sight, touch and hearing.

6) Augmented

This VR solution is an invasive strategy towards reality. As a matter of fact user’s view of the world is supplemented with virtual objects and items whose meaning is aimed at enriching the information content of the real environment. In military applications for instance vision performance is enhanced by providing the pictograms that anticipate the presence of other entities out of sight.


2. VR market analysis

In the Information Technology trend, Virtual Reality has been identified as one of the most promising development areas. As it happens with all the innovative applications this new technology is not excluded from the generation of problems and concerns regarding its implementation in operative working domains. Yet we are witnessing a constant improvement in marketing perspective of both quality of applicative VR systems and receptiveness of potential customers. This is due to mainly three reasons: (1) the decrease of the cost of VR systems and devices (2) the constant improvement of performance reliability of the technology, (3) the extremely valuable economic benefits derived from VR use in its various forms and purposes (training, simulation, design). So we can affirm the consolidation of a class of technology that can positively be stated as “virtual reality” and appraised like any other novel high tech industry. This technology has been confidently adopted in a number of markets, and has the potential to penetrate in many more.

The VR market is at present immature, without any clear market leaders or clear segmentation of activities. In a recent paper prepared for the European Commission’s IT Policy Analysis Unit (DG III/A.5) on VR, PVN (Belgium) estimates a market of $570 million (MECU 483) by 1998. This figure includes both hardware and software. The bad news for Europe is that it is forecast to have only $115 million (MECU 97) of that market, a poor third behind the USA and Japan.
A study into telematics applications of virtual environments, carried out by Sema Group (F), Fraunhofer IAO (D) and MIT’s Research Laboratory for Electronics (USA) for the Commission’s DG XIII/C in 1994, predicted a market evaluation of “roughly MECU 400 – MECU 500 by 1998” with a growth rate “very high, approaching 70-80% per year”. What is perhaps less disputed is that the major market activity is in entertainment equipment.

Frost & Sullivan’s 1994 VR market report stated that about 250 companies existed in the USA and only 25 in other countries which claim to make even part of their revenue from VR. Of these, no one firm earned more than $10 million (MECU 8.4) from VR alone. A recent Financial Times Report listed four types of commercial VR company – software companies, component manufacturers, system companies and ‘other industry participants’. As might be expected, the vast majority of such companies are US-based. Only two European company, Superscape and Division of the UK, is listed under software companies and only one European Company, Virtuality, is listed under component manufacturers.

Although this listing was not ranked and was definitely not exhaustive, most activity does seem to be taking place in the USA. The wider availability of venture capital and the tendency of small firms to ‘spin off’ from others may account in part for this.

According to the recent (Jan. 96) Business Communications Company, Inc. report “RGB-175/The Virtual Reality Business”, by 1996, more than 300 companies will settle sales for about $255 million worth of VR products and services and behind this figures lay as VR customers many multinational brands of military and medical products. By 2000, the VR industry will be posting annual sales of over $1 billion and reaching an annual average growth rate (MGR) of 33%.

In July of 1996 Ovum, the UK market research company published another survey on Virtual Reality (VR) markets: ‘Virtual Reality: Business Applications, Markets and Opportunities. Ovum expects the ‘killer application’ of VR to be in 3D interfaces to the Internet, used for promoting products and services on the World Wide Web (WWW). It predicts that in the next five years, VR will be widely used as a GUI (graphical user interface) for standard business software, thus replacing icon-based GUIs for such applications as database, business systems and networked management software. According to the survey, a large proportion of companies polled indicated that they would use PC based VR training applications for their employees.

Regarding the present uptake of VR in business, the report concludes that ?companies are finding virtual reality an important source of competitive advantage? and that ?although some companies are taking their time to evaluate VR, which is slowing down the speed of market lift-off, many are reporting significant benefits and are increasing their use of VR technology.? It explains this expected increase in uptake by saying that ?In many cases, companies have made cost savings of over US$1 million. They have experienced faster time to market, fewer mistakes than when using CAD technologies, greater efficiency in working methods and improved quality in final products.?

The report predicts that the VR market will grow from US$134.9 million in 1995 to just over US$1 billion by the year 2001 and that the largest growth sector will be in the software sector with a 58 per cent annual growth in this period.

Another significant finding of the report is that the business market for VR in 1995 represented 65 per cent of the total, with entertainment applications accounting for only 35 per cent. VR is normally seen to be of major significance to the games market?. it is not known whether, and how, the authors distinguish between entertainment and ?the entertainment business?.

The Ovum survey foresees a radical shift in how companies will be using VR between now and the year 2001. Today the majority of VR applications are in design automation: virtual prototyping, interior design and ergonomics, and architectural and engineering design. Expensive, workstation-based systems currently dominate, accounting for 43 per cent of the market. By 2001, however, PC-based VR technology will account for 46 per cent of the business market, where most of the applications will be non-immersive, using computer screens instead of headsets.

Virtual Reality Market Forecasts by Application ($ millions, constant 1995 )

1994 1995 2000 AAGR% 1995-2000
Instructional & Developmental 70 95 355 31
Design & Development VR 25 30 150 40
Entertainment VR 60 110 500 35
Medical Treatment VR 10 20 50 20
Total 165 255 1055 33
Source: Business Communications Company, Inc., GB-175, The Virtual Reality Business, 1996

Applicative domains and major marketing areas

At the current state of the situation all marketing experts converge on the fact that the major market activity is entertainment equipment: leisure technology uses account for the largest VR market value, and are foreseen to continue growing at a 35% AAGR to the year 2000 (see table). The critical mass in marketing terms will be reached with high-scale produced single-user entertainment VR system, this will be the propelling force pushing the market growth from a current 1995 value of $110 million to $500 million by year 2000.

Home and entertainment

The great market expansion is expect for site- based entertainment. This expectation is based upon the evaluation two factors: the low saturation, and dramatic decrease of prices. This phenomena will allow VR technology to be used by all facets of society, including commercial/industrial, the government, military, and university and secondary schools at a stage not comparable with any previous existing situation. A great role will also be covered with in the support to education in general, for instance the instructional and developmental market is expected to widen its share from a $95 million 1995 market figure to $355 million by 2000, resulting in an AAGR of 31%. The dimension of this increase will affect technical/engineering colleges and universities, and the “developmental” VR includes spending on advanced, but as yet non-commercial applications, along with pure science and research systems not included in the other categories.

Industrial and Scientific Design

Applications of design and development VR market are in engineering, architecture and chemical design and development a constant shift will bring performance of CAD/ CAMM application to the standards of Virtual Reality applications . This market will grow from a 1995 market value of $30 million, to $150 million by 2000, reaching an AAGR of 40%. Medical treatment VR market will also sustain growth. The 1995 market value of $20 million is projected to reach $50 million by 2000, reaching a 20% AAGR.

The searching for common standards

Current VR products employ proprietary hardware and software. There is little doubt that incompatibility between different systems is restricting market growth at present. It is probable that as the market matures, certain de facto standards will emerge, perhaps when major players become involved. It is probable that the VR market will follow the route of the real-time financial information markets which found that adopting an open systems approach did not damage sales, as had been feared, but helped encourage the growth of the marketplace. According to the IMO – Information Group at Policy Studies Institute, London (August 95 – VIRTUAL REALITY: THE TECHNOLOGY AND ITS APPLICATIONS), “in the future an open systems approach will emerge for VR as well”. At that point, the market is likely to expand considerably.

However, the cost of VR equipment is falling rapidly. For example, headgear prices have already fallen from hundreds of thousands of dollars to $200 (ECU 169), and basic VR software packages are available commercially for $100 (ECU 85), or can be downloaded from the Internet. Simple VR games software is available in the USA for $70 (ECU 59).


3. VR in Europe

The seminal efforts that gave rise to VR took place in the US. Funding from EC organisations has been slower in coming than in the US, where the Office of Naval Research, National Science Foundation, and Advanced Research Projects Agency now fund VR research and the National Aeronautics and Space Administration has been a long-time developer. This situation is perhaps attributable to the large cost associated with VR until quite recently. However the importance of VR is clearly understood in Europe and progress is now going forward across the entire spectrum of virtual reality, with special emphasis on industrial and commercial applications.

Europe encompasses various countries and cultures, and acceptance of the importance of VR has not been uniform. Interest by British Aerospace, the presence of the parallel processing company Inmos (makers of the Transputer), and early funding by the Department for Trade and Industry are cited by UK researchers as factors that drove research in the UK in the mid-to-late 1980s. This resulted in technology transfer that has produced several successful commercial efforts. More recently, German laboratories and institutions have become active in applying immersion technology to a broad range of applications. France has several of Europe’s leading research institutions for machine vision, robotics, and related technologies that affect VR, but has been less active in developing systems that provide interactive immersion. Most other West European countries have some VR R&D.

In the last two years, the EC organised several events to evaluate VR as a topic for the next research initiative. Recently EC presented one study titled: “Telematics applications of VE – The use of Virtual Environment Techniques in the Application of Telematics to Health Care, Transport, Training and the Disabled and Elderly”. This study was the third activity in a row starting with a workshop in March 1993 in Brussels in which was tried to make some kind of a status report and start the process of gathering recommendations on how to incorporate VR in future EC programmes. The second activity was a small report creating the basis for a larger study, which finally was carried out by a team from Fraunhofer Institute, SEMA Group and MIT.

The “Telematics Application” shows a small section on VE technologies, VE applications (generic use of VE technological capabilities, evaluation of the market) and treats then each of the mentioned fields (Education/Training, Transport, Health Care, and Elderly and Handicapped) and finishes of with potential actions for the TAP programme. In the health area the reports states: “In effect, the objective is to validate the 3-D approaches of VE, and evaluate their benefits for future health care systems. In parallel, other projects aimed at providing basic building blocks for future uses in VE- based medical applications are also of interest. They concern digital and computational models of the human body or critical organs”. The report stresses the use of VE in minimally invasive surgery, surgical decision support and training of surgeons, doctors and students. It also finds a use in evaluation of human interfaces and other factors in the design of critical components of new health care facilities.

EC funded projects/working groups relevant to VREPAR

The European Strategic Program for Research and Development (Esprit II) funded a handful of ongoing VR projects. Glad-in-Art is developing a glove-exoskeleton interface system to manipulate virtual objects, while SCATIS intends to integrate room acoustics into virtual worlds, and Humanoid concentrates on the development and simulation of virtual humans.

The call for proposals for Esprit III did not include a specific VR component. However, VR was explicitly mentioned within the basic research and multimedia components (two of the seven program areas). Between the funded studies we remember FIVE (Framework for Immersive Virtual Environments).

Other VR projects deal with Virtual Environment on Multi-Modal Interfaces (MIAMI and VETIR). VETIR deals with the use of virtual environment technologies in motor disabilities’ rehabilitation technology Initiative for Disabled and Elderly People.


4. Medical Applications of VR

Three important aspects of virtual reality systems offer new possibilities to medical treatment:

  • How They Are Controlled
    Present alternate computer access systems accept only one or at most two modes of input at a time. The computer can be controlled by single modes such as pressing keys on a keyboard, pointing to an on-screen keyboard with a head pointer, or hitting a switch when the computer presents the desired choice, but present computers do not recognize facial expressions, idiosyncratic gestures, or monitor actions from several body parts at a time. Most computer interfaces accept only precise, discrete input. Thus many communicative acts are ignored and the subtleness and richness of the human communicative gesture are lost. This results in slow, energy-intensive computer interfaces. Virtual reality systems open the input channel: the potential is there to monitor movements or actions from any body part or many body parts at the same time. All properties of the movement can be captured, not just contact of a body part with an effector.
    Given that these actions are monitored, why can the user control more in the virtual world than in the real world? In the virtual environment these actions or signals can be processed in a number of ways. They can be translated into other actions that have more effect on the world being controlled, for example, virtual objects could be pushed by blowing, pulled by sipping, and grasped by jaw closure. Proportional properties such as force, direction, and speed could become interchangeable allowing the person with arthritic joints to push something harder, without the associated pain, by simply moving faster. They could be filtered to achieve a cleaner signal. Actions can be amplified thus movement of the index finger could guide a tennis racket. Alternately movements could be attenuated giving the individual with large, poorly controlled movement more precise control of finer actions.
  • Feedback
    Because VR systems display feedback in multiple modes, feedback and prompts can be translated into alternate senses for users with sensory impairments. The environment could be reduced in size to get the larger or overall perspective (without the “looking through a straw effect” usually experienced when using screen readers or tactile displays). Objects and people could show speech bubbles for the person who is deaf. Sounds could be translated into vibrations or into a register that is easier to pick up. Environmental noises can be selectively filtered out. The user with a spinal cord injury with no sensation in her hands could receive force and density feedback at the shoulder, neck, or head.
    For the individual multimodal feedback ensures that the visual channel is not overloaded. Vision is the primary feedback channel of present-day computers; frequently the message is further distorted and alienated by representation through text. It is very difficult to represent force, resistance, density, temperature, pitch, etc., through vision alone. Virtual reality presents information in alternate ways and in more than one way. Sensory redundancy promotes learning and integration of concepts.
  • What Is Controlled
    The final advantage is what is controlled. Until the last decade computers were used to control numbers and text by entering numbers and text using a keyboard. Recent direct manipulation interfaces have allowed the manipulation of iconic representations of text files or two dimensional graphic representations of objects through pointing devices such as mice (Brownlow, 1989). The objective of direct manipulation environments was to provide an interface that more directly mimics the manipulation of objects in the real world. The latest step in that trend, virtual reality systems, allows the manipulation of multisensory representations of entire environments by natural actions and gestures. This last step may make accessible valuable experiences missed due to physical or sensory impairments. These experiences may include early object-centered play, and early independent mobility.
    In virtual environments we can simulate inaccessible or risky experiences, allowing the user to extract the lessons to be learned without the inherent risk. Virtual reality systems can allow users to extend their world knowledge.

According to an assessment on current diffusion of VR in the medical sector, gathered by the Gartner Group, forecast of VR future in this area are quite promising. Within the medical application its strategic relevance will increase and gain importance. It is envisaged that by year 2000 despite possible technological barriers, virtual reality techniques will be integrated in endoscopic surgical procedures. VR will affect also the medical educational strategy for students as well as experienced practitioners, who will increasingly be involved in immersive simulated techniques. It is expected that these educational routines can become of routine by year 2005.

VR has been until now widely underused, probably because of prohibitive hardware costs, nevertheless this technology is pushing forward new challenges and advances that will materialise by year 2000. The medical use of VR will take place mainly in four domains:

  • teaching: VR will reproduce environments or special conditions that will enable to educate medical personnel.
  • simulation: VR will mix video and scanner images to represent and plan surgical intervention, effects of therapy.
  • diagnostics: it will be possible to forecast the effects of complex combinations of healing treatments.
  • therapy: A valuable exploitation of VR in the medical sector is seen with interest in the therapy of psychiatric/psychological disorders such as acrophobia, claustrophobia, nyctophobia, agoraphobia, eating disorders, etc. Therapeutic techniques will include practices that will allow the patients to reproduce and master problem environments.

For a more detailed description of the use of VR in health care you can read the paper: VR in Health Care: A Survey


5. Issues to be solved

Although the technology is mature enough to have different applications, there are key issues to be resolved for its use for practical applications.

  • costs: The product seem to be “a solution in search of a problem”. As with early computer graphics products, the entry-level costs are relatively prohibitive. A complete VR environment, including workstations, goggles, body suits, and software, is in the range of KEcu 70.000 to KEcu 1.000.000.
  • lack of standard and reference parameters: The hyperbole and sensational press coverage associated with some of these technologies have led many potential users to overestimate the actual capabilities of existing systems. Many of them must actually develop the technology significantly for their specific tasks. Unless their expertise includes knowledge of the human-machine interface requirements for their application, their resulting product will rarely get beyond a “conceptual demo” that lacks practical utility.
  • human factors: The premise of VE seems to be to enhance the interaction between people and their systems. It thus becomes very important to understand how people perceive and interpret events in their environments, both in and out of virtual representation of reality. We must address issues of human performance to understand how to develop and implement VE technology that people can use comfortably and effectively. Fundamental questions remain about how people interact with the systems, how they may be used to enhance and augment cognitive performance in such environments, and how they can best be employed for instruction, training, and other people oriented applications.

6. Conclusion

The marketing situation of VR is very fluid, this means that the technology while being ready for professional applications is not at the stage of settling definite standards and definite reference points in all perspectives, including possible leading manufacturers, compatibility specifications, performance levels, economical costs and human expertise. So standing the situation it is heavily characterised by uncertainty.

This uncertainty should not be confused with lack of confidence on the promising outcomes of the technology, but instead with the rapid mutation and evolution that characterises all information technology markets. For what concerns the project these reflections sound as warning in the adoption of solutions that need to be considered as a short term answer to a contingent problem. A special concern must be raised to a continuos chase of the last up to date technological product release.

In the general aim of the project we take advantage of the capillary diffusion of the PC based technology and to the best associated hardware and software devices available that can ensure both reliability and availability in different domains independently of the different constraints posed by geographical location.

Explore Virtual Reality at GTC

Explore Virtual Reality at GTC

Explore Virtual Reality at GTC

The Virtual Reality Track at GTC delivers valuable insight and best practices for creative and technical professionals across a wide range of industries:

  • Manufacturing
  • Media & Entertainment
  • Medical
  • AEC
  • Energy & Scientific Visualization
  • Gaming

This track is ideal for ISVs that serve these industries with professional applications for content creation and visualization, as well as HMD manufacturers offering equipment for VR experiences.

Explore Virtual Reality at GTC

Explore Virtual Reality at GTC

There’s also a VR Village, where you can explore the latest advances in VR technologies and learn all about the visualization power they demand. From 3D gaming, to product design, to cinematic experiences and beyond, virtual reality promises to revolutionize the way we experience the digital world.

And just announced is the ECS VR Showcase – an opportunity for 8 teams to present their innovative work using Virtual Reality. The winning team will win $30,000 USD in cash and prizes.

Attend and learn how you can adapt VR into your business strategies.

Download Crytek’s “Back to Dinosaur Island 2” Virtual Reality Demo for Free

Download Crytek’s “Back to Dinosaur Island 2” Virtual Reality Demo for Free

Download Crytek’s “Back to Dinosaur Island 2” Virtual Reality Demo for Free

Players are invited to interact with another world in Crytek’s VR showcase. Crytek released its Back to Dinosaur Island 2 virtual reality demo as a free download today, giving players everywhere the chance to experience the combined power of CRYENGINE and VR hardware.

Back to Dinosaur Island 2 received a glowing reception when it was first shown to attendees at E3 2015 and has previously only been playable at select industry events. Now, however, gamers everywhere can sample the VR experience firsthand by downloading it for free from Steam.

The demo invites players to scale a deadly cliff face as huge flying dinosaurs react to their presence, and debris rains down from above. Mysterious landmarks on the horizon and stunning vistas on every side combine to immerse gamers in an entirely new reality.

Crytek’s Executive Producer, Elijah Freeman, said: “The feedback we received from people who played Back to Dinosaur Island 2 was really encouraging, and the lessons we learned from creating it have been significant for our current VR projects. The demo goes beyond being merely a visual showcase and includes interactive elements that harness the unique power of the medium. By making this experience available for free, we hope as many players as possible will take the opportunity to feel truly present in a new world of dinosaurs.”

Download Crytek’s “Back to Dinosaur Island 2” Virtual Reality Demo for Free

Download Crytek’s “Back to Dinosaur Island 2” Virtual Reality Demo for Free

Crytek has also released a video that offers a glimpse of what to expect in the demo. The video is now playing at YouTube, and gamers can visit www.crytek.com and www.cryengine.com for the latest news on Crytek’s ongoing work in VR.

Back to Dinosaur Island 2 can be played using any VR headset with Rift SDK 0.8 and later.

10 Ways NVIDIA Is Making Virtual Reality a Reality

10 Ways NVIDIA Is Making Virtual Reality a Reality

10 Ways NVIDIA Is Making Virtual Reality a Reality

My first impression of virtual reality was back in the early 1990s, in a pod playing Dactyl Nightmare in a Dave & Busters restaurant. It was less compelling by today’s standards, but enough to hook me and a whole generation of future engineers and gamers.

That generation has come of age, and so has VR.

Every tradeshow, every product launch and every news beat has a VR angle. And NVIDIA is helping to pioneer the technology that’s making it a reality.

Here are 10 examples:

1) NVIDIA is building the fastest GPUs for VR.

There are two platforms for immersive VR gaming and experiences: entry-level experiences provided by consoles and premier experiences provided by PCs. Consider the view of veteran industry watcher Jon Peddie, of Jon Peddie Research:

“VR will be a multi-tier experience, like all entertainment platforms. Consoles will appeal to the casual user, whereas the PC with three to four times the processing power will be the platform for the intense gamer. In the PC market, NVIDIA has a substantial market share in enthusiast graphics boards, the type needed for Oculus and HTC VR experiences.”

Just like with video games, a PC with a GeForce GTX GPU offers the richest VR experience, with more performance, higher immersion and great fidelity. Even the lowest VR Ready GeForce GTX GPU offers double the performance of console.1 And given that immersive VR requires seven times the processing power of traditional 3D games, you really need that performance to get the best experience.2

2) NVIDIA’s VR SDK, VRWorks, is seeing broad adoption.

NVIDIA has created the VRWorks software development kit to provide headset and application developers with the best performance, lowest latency and plug-and-play compatibility for VR. The top game engines that are being used for creating VR games, including Unity, Unreal Engine and Max Play, are now integrating NVIDIA VRWorks. HTC and Oculus headsets have added support for VRWorks. It’s being adopted by cutting-edge VR developers like Sólfar Studios with Everest VR, Valve Software with The Lab, ILMxLAB with Star Wars Trials on Tatooine and InnerVision Games with Thunderbird: The Legend Begins.

3) NVIDIA GPUs provide Multi-res Shading for up to 50 percent more performance.

NVIDIA Multi-res Shading is an innovative rendering technique for VR in which each part of an image is rendered at a resolution that better matches the final image a user sees on the headset. The technology is integrated and available today to developers in Unreal Engine with performance gains of up to 50 percent. That enables developers to put more visual quality into their VR games and experiences

4) NVIDIA’s Game Ready drivers means VR games ‘just work’ from day one.

Any solution is only as good as the GPU’s drivers. Our Game Ready drivers are recognized as the best in the industry. NVIDIA works closely with developers to make sure games perform well on the day the game ships. This is incredibly important for VR, as the slightest stutter or performance dip can ruin the experience. Delivering launch day drivers will be a big difference for VR games and applications.

5) Our GeForce GTX VR Ready program is more than 100 partners strong.

NVIDIA’s GeForce GTX VR Ready program makes it easy for consumers to get the right gear for VR. Navigating an emerging technology like VR can be confusing — so we’ve worked with our partners worldwide to simplify the buying process. The GeForce GTX VR Ready badge quickly shows if a PC or graphics card is capable of handling the demands of VR.  Our program currently has more than 100 PC makers, system builders, add-in card partners and retailers around the globe.

6) VR-ready notebooks are powered by NVIDIA.

Notebooks that feature NVIDIA GeForce GTX 980 GPUs are the only VR-ready notebooks in the world. These powerful NVIDIA notebook GPUs enable developers and gamers to take their immersive VR experiences with them on the go.

7) NVIDIA GPUs are driving Oculus Ready PCs.

In addition, NVIDIA is not the only one with a VR-ready program. Oculus, makers of the Rift headset, has its own program. And every Oculus Ready PC to date is driven by an NVIDIA GeForce GTX GPU.

8) NVIDIA makes immersive VR accessible.

There is a misconception that VR requires performance capabilities out of reach for most gamers. Truth be told, the GeForce GTX 970 GPU is the most popular graphics card on the Steam survey and millions already have it in their machines. This means more consumers are ready to enjoy immersive VR today.

9) NVIDIA is bringing more performance to mobile VR.

NVIDIA is continuing to push forward the state of the art for mobile-based VR experiences. You can find NVIDIA Tegra processors powering several mobile VR and augmented reality devices, including headsets from GameFace Labs and Atheer. Thanks to the performance of Tegra, developers can tackle new classes of mobile VR/AR experiences.

10) NVIDIA is accelerating 360-degree video for VR.

NVIDIA GPUs are at the heart of 360-degree video used in VR. NVIDIA’s CUDA programming model is used to rapidly stitch video from multiple cameras together into a single 360-degree panorama. At NVIDIA’s GPU Technology Conference in April, attendees will find a full speaker track on VR, including talks from 360-degree video companies that use GPU acceleration, such as Jaunt VR and VideoStitch.

VRWorks is being adopted by cutting-edge VR developers like Sólfar Studios, creators of Everest VR.

VRWorks is being adopted by cutting-edge VR developers like Sólfar Studios, creators of Everest VR.

See It for Yourself at GDC

You can see our work in VR at GDC. NVIDIA has partnered with a host of developers to feature amazing VR experiences at our booth (South Hall #824) on HTC Vive and Oculus Rift headsets. They include:

  • A new chapter of Everest VR from Sólfar Studios that incorporates NVIDIA Multi-res Shading technology and GameWorks turbulence effects
  • ILMxLAB’s Star Wars: Trials on Tatooine VR experience, powered by two GeForce GTX TITAN X GPUs using VR SLI technology
  • Epic’s Bullet Train, Oculus Studio’s VR Sports and CCP’s EVE: Valkyrie

Beyond the NVIDIA booth, GDC attendees will find GeForce GTX GPUs powering the top VR experiences across the show floor. These include:

Company Location
Epic Moscone South Hall 1024
Oculus Moscone South Hall 802
Valve Ballroom 104
GDC VR Lounge Moscone West 3rd Floor

VR is an exciting new medium for gaming, entertainment and professional use cases. The performance of the PC will make it the destination for premium VR experiences. As the worldwide leader in PC graphics, NVIDIA is working hard to provide a VR graphics platform that offers developers both a large installed base and the best performance.

We can’t wait to see what you build with it.

1 GeForce GTX 970 produces 3.5 teraflops vs 1.8 teraflops for PlayStation 4, delivering 2x performance.

2 A PC game running 1920×1080 at 30fps on a single screen compared to a VR headset running at 1680×1512 at 90fps on each of two screens



Popular Pages
  • CV Resume Ahmadrezar Razian-سید احمدرضا رضیان-رزومه Resume Full name Sayed Ahmadreza Razian Nationality Iran Age 36 (Sep 1982) Website ahmadrezarazian.ir  Email ...
  • CV Resume Ahmadrezar Razian-سید احمدرضا رضیان-رزومه معرفی نام و نام خانوادگی سید احمدرضا رضیان محل اقامت ایران - اصفهان سن 33 (متولد 1361) پست الکترونیکی ahmadrezarazian@gmail.com درجات علمی...
  • Nokte feature image Nokte – نکته نرم افزار کاربردی نکته نسخه 1.0.8 (رایگان) نرم افزار نکته جهت یادداشت برداری سریع در میزکار ویندوز با قابلیت ذخیره سازی خودکار با پنل ساده و کم ح...
  • Tianchi-The Purchase and Redemption Forecasts-Big Data-Featured Tianchi-The Purchase and Redemption Forecasts 2015 Special Prize – Tianchi Golden Competition (2015)  “The Purchase and Redemption Forecasts” in Big data (Alibaba Group) Among 4868 teams. Introd...
  • Brick and Mortar Store Recommendation with Budget Constraints-Featured Tianchi-Brick and Mortar Store Recommendation with Budget Constraints Ranked 5th – Tianchi Competition (2016) “Brick and Mortar Store Recommendation with Budget Constraints” (IJCAI Socinf 2016-New York,USA)(Alibaba Group...
  • Drowning Detection by Image Processing-Featured Drowning Detection by Image Processing In this research, I design an algorithm for image processing of a swimmer in pool. This algorithm diagnostics the swimmer status. Every time graph sho...
  • Shangul Mangul Habeangur,3d Game,AI,Ahmadreza razian,boz,boz boze ghandi,شنگول منگول حبه انگور,بازی آموزشی کودکان,آموزش شهروندی,آموزش ترافیک,آموزش بازیافت Shangul Mangul HabeAngur Shangul Mangul HabeAngur (City of Goats) is a game for child (4-8 years). they learn how be useful in the city and respect to people. Persian n...
  • 1st National Conference on Computer Games-Challenges and Opportunities 2016-Featured 1st National Conference on Computer Games-Challenges and Opportunities 2016 According to the public relations and information center of the presidency vice presidency for science and technology affairs, the University of Isfah...
  • Design an algorithm to improve edges and image enhancement for under-sea color images in Persian Gulf-Featured 3rd International Conference on The Persian Gulf Oceanography 2016 Persian Gulf and Hormuz strait is one of important world geographical areas because of large oil mines and oil transportation,so it has strategic and...
  • 2nd Symposium on psychological disorders in children and adolescents 2016 2nd Symposium on psychological disorders in children and adolescents 2016 2nd Symposium on psychological disorders in children and adolescents 2016 Faculty of Nursing and Midwifery – University of Isfahan – 2 Aug 2016 - Ass...
  • MyCity-Featured My City This game is a city simulation in 3d view. Gamer must progress the city and create building for people. This game is simular the Simcity.
  • ببین و بپر - Watching Jumping ببین و بپر به زودی.... لینک صفحه : http://bebinbepar.ir
Popular posts
Interested
About me

My name is Sayed Ahmadreza Razian and I am a graduate of the master degree in Artificial intelligence .
Click here to CV Resume page

Related topics such as image processing, machine vision, virtual reality, machine learning, data mining, and monitoring systems are my research interests, and I intend to pursue a PhD in one of these fields.

جهت نمایش صفحه معرفی و رزومه کلیک کنید

My Scientific expertise
  • Image processing
  • Machine vision
  • Machine learning
  • Pattern recognition
  • Data mining - Big Data
  • CUDA Programming
  • Game and Virtual reality

Download Nokte as Free


Coming Soon....

Greatest hits

Waiting hurts. Forgetting hurts. But not knowing which decision to take can sometimes be the most painful.

Paulo Coelho

You are what you believe yourself to be.

Paulo Coelho

One day you will wake up and there won’t be any more time to do the things you’ve always wanted. Do it now.

Paulo Coelho

Gravitation is not responsible for people falling in love.

Albert Einstein

The fear of death is the most unjustified of all fears, for there’s no risk of accident for someone who’s dead.

Albert Einstein

Imagination is more important than knowledge.

Albert Einstein

Anyone who has never made a mistake has never tried anything new.

Albert Einstein

It’s the possibility of having a dream come true that makes life interesting.

Paulo Coelho


Site by images
Recent News Posts